Pharmacodynamics of ceftazidime administered as continuous infusion or intermittent bolus alone and in combination with single daily-dose amikacin against Pseudomonas aeruginosa in an in vitro infection model.

AUTOR(ES)
RESUMO

We compared the pharmacodynamics and killing activity of ceftazidime, administered by continuous infusion and intermittent bolus, against Pseudomonas aeruginosa ATCC 27853 and ceftazidime-resistant P. aeruginosa 27853CR with and without a single daily dose of amikacin in an in vitro infection model over a 48-h period. Resistance to ceftazidime was selected for by serial passage of P. aeruginosa onto agar containing increasing concentrations of ceftazidime. Human pharmacokinetics and dosages were simulated as follows: half-life, 2 h; intermittent-bolus ceftazidime, 2 g every 8 h (q8h) and q12h; continuous infusion, 2-g loading dose and maintenance infusions of 5, 10, and 20 micrograms/ml; amikacin, 15 mg/kg q24h. There was no significant difference in time to 99.9% killing between any of the monotherapy regimens or between any combination regimen against ceftazidime-susceptible P. aeruginosa. Continuous infusions of 10 and 20 micrograms/ml killed as effectively as an intermittent bolus of 2 g q12h and q8h, respectively. Continuous infusion of 20 micrograms/ml and an intermittent bolus of 2 g q8h were the only regimens which prevented organism regrowth at 48 h, while a continuous infusion of 5 micrograms/ml resulted in the most regrowth. All of the combination regimens exhibited a synergistic response, with rapid killing of ceftazidime-susceptible P. aeruginosa and no regrowth. Against ceftazidime-resistant P. aeruginosa, none of the ceftazidime monotherapy regimens achieved 99.9% killing. The combination regimens exhibited the same rapid killing of the resistant strain as occurred with the susceptible strain; however, regrowth occurred with all regimens. The combination regimens of continuous infusion of 20 micrograms/ml plus amikacin and intermittent bolus q8h or q12h plus amikacin continued to be synergistic. Overall, continuous infusion monotherapy with ceftazidime at concentrations 4 to 5 and 10 to 15 times the MIC was as effective as an intermittent bolus of 2 g q12h (10 to 15 times the MIC) and q8h (25 to 35 times the MIC), respectively, against ceftazidime-susceptible P. aeruginosa. Combination therapy with amikacin plus ceftazidime, either intermittently q8h or by continuous infusion of 20 micrograms/ml, appeared to be effective and exhibited synergism against ceftazidime-resistant P. aeruginosa.

Documentos Relacionados