Phenotypic variation in a genetically identical population of mice.

AUTOR(ES)
RESUMO

The parental alleles of an imprinted gene acquire their distinctive methylation patterns at different times in development. For the imprinted RSVIgmyc transgene, methylation of the maternal allele is established in the oocyte and invariably transmitted to the embryo. In contrast, the methylation of the paternal allele originates during embryogenesis. Here, we show that the paternal methylation pattern among mice with identical genetic backgrounds is subject to extensive variation. In addition to this nongenetic variation, the process underlying RSVIgmyc methylation in the embryo is also subject to considerable genetic regulation. The paternal transgene allele is highly methylated in an inbred C57BL/6J strain, whereas it is relatively undermethylated in an inbred FVB/N strain. Individual methylation patterns of paternal alleles, and therefore all of the variation (nongenetic and genetic) in methylation patterns within an RSVIgmyc transgenic line, are established in early embryogenesis. For each mouse, the paternal RSVIgmyc allele is unmethylated at the day-3.5 blastocyst stage, and the final, adult methylation pattern is found no later than day 8.5 of embryogenesis. Because of the strong relationship between RSVIgmyc methylation and expression, the variation in methylation is also manifest as variation in transgene expression. These results identify embryonic de novo methylation as an important source of both genetic and nongenetic contributions to phenotypic variation and, as such, further our understanding of the developmental origin of imprinted genes.

Documentos Relacionados