Phosphorylation of an 85-kd membrane protein by a novel mechanism.

AUTOR(ES)
RESUMO

Protein phosphorylation has been recognized as a major mechanism for the regulation of cellular functions. The classical phosphate donor in protein phosphorylation reactions is ATP. Here we show that 3'-phosphoadenosine-5'-phosphosulphate (PAPS), a ubiquitous nucleotide so far known to have a central role in sulphate transfer, serves as phosphate donor for protein phosphorylation. In a very specific, rapid and probably autocatalytic reaction, the 3'-phosphate group of PAPS was found to be transferred to a serine residue of an 85-kd membrane protein (p85). ATP did not serve as phosphate donor in this reaction. Radioactive phosphate incorporated into p85 in a membrane fraction was rapidly lost by dephosphorylation after removal of PAPS or by exchange with unlabelled phosphate after addition of nonradioactive PAPS. PAPS-dependent phosphorylation of the 85-kd protein and other proteins was observed in all rat and bovine tissues examined, as well as in various mammalian cell lines. Our results indicate the existence of a novel widespread form of protein phosphorylation.

Documentos Relacionados