Phosphorylation of I kappa B alpha precedes but is not sufficient for its dissociation from NF-kappa B.

AUTOR(ES)
RESUMO

NF-kappa B is an important activator of immune and inflammatory response genes. NF-kappa B is sequestered in the cytoplasm of nonstimulated cells through interaction with the I kappa B inhibitors. These inactive complexes are dissociated in response to a variety of extracellular signals, thereby allowing free NF-kappa B dimers to translocate to the nucleus and active transcription of specific target genes. The current dogma is that phosphorylation of the I kappa Bs is responsible for dissociation of the inactive complexes, an event that is rendered irreversible by rapid I kappa B degradation. Here, we show that inducers of NF-kappa B activity stimulate the hyperphosphorylation of one of the I kappa Bs, I kappa B alpha. However, contrary to the present dogma the hyperphosphorylated form of I kappa B alpha remains associated with NF-kappa B components such as RelA (p65). Thus, phosphorylation of I kappa B alpha is not sufficient to cause dissociation of the inactive NF-kappa B:I kappa B alpha complex. However, that complex is disrupted through the selective degradation of phosphorylated I kappa B alpha in response to extracellular signals. Using a variety of protease inhibitors, some of which have specificity towards the multicatalytic proteinase complex, we demonstrate that degradation of I kappa B alpha is required for NF-kappa B activation. The results of these experiments are more consistent with a new model according to which phosphorylation of I kappa B alpha associated with NF-kappa B marks it for proteolytic degradation. I kappa B alpha is degraded while bound to NF-kappa B. The selective degradation of I kappa B alpha releases active NF-kappa B dimers which can translocate to the nucleus to activate specific target genes.

Documentos Relacionados