Physiological and Morphological Changes Induced by Nutrient Limitation of Pseudomonas fluorescens 378 in Continuous Culture

AUTOR(ES)
RESUMO

Pseudomonas fluorescens 378 was studied in continuous culture at a dilution rate of 0.05 or 0.15 h−1 and under a limitation of carbon/energy, nitrogen, phosphorus, iron(III), or oxygen. Cultures were examined for nutritional consumption, production of biosurfactant AP-6 and lipase, and electron microscopy morphology. Morphological features were lysis and plasmolysis of the cells, vacuoles in the cells, granules in cell nuclei, and DNA coagulation during transmission electron microscopy preparation. Biosurfactant and lipase production were lost after 8 to 15 retention times, but under iron limitation and at low dilution rate they were maintained for more than 30 retention times. Consumption of nutrients varied between different cultures. Between 2.4 and 6.0 g of succinic acid per g (dry weight) was consumed; the highest value was obtained under phosphorus limitation. The uptake of nitrogen was mostly about 0.16 g/g (dry weight), and that of phosphorus varied between 13 and 58 mg/g (dry weight). Phosphorus-limited cells reduced their phosphorus consumption by at least 50% compared with other limitations. Cell morphology varied among different cultures. Up to 25% cell lysis occurred at the higher dilution rate. The frequencies of plasmolysis varied between 0 and 85%. Granules in nuclei were found in 65 to 100% of the cells. Vacuoles appeared mostly in low numbers, but at the lower dilution rate under phosphorus or iron limitation the frequencies increased to between 25 and 85%. At high dilution rate, the DNA coagulated in 30 to 70% of the cells. Multivariate data analysis demonstrated a general difference between the two tested dilution rates; i.e., both nutritional and morphological features differed more between the two tested dilution rates than between the different limitations. Cultures at the lower dilution rate changed more with time; this was especially pronounced for phosphorus or iron limitation. The data analysis also showed a correlation between plasmolysis or vacuoles in the cells and an increased carbon uptake under phosphorus limitation.

Documentos Relacionados