Post-Translational Modification as a Potential Explanation of High Levels of Enzyme Polymorphism: Xanthine Dehydrogenase and Aldehyde Oxidase in DROSOPHILA MELANOGASTER

AUTOR(ES)
RESUMO

Xanthine dehydrogenase (XDH) and aldehyde oxidase (AO) in Drosophila melanogaster require for their activity the action of another unlinked locus, maroon-like (mal). While the XDH and AO loci are on chromosome 3, mal maps to the X chromosome. Although functional mal gene product is required for XDH and AO activity, it is possible to examine the effects of mutant mal alleles in those cases when pairs of mutants complement to produce a partial restoration of activity. To test whether mal mediates a post-translational modification of the XDH and AO proteins, we constructed several mal heteroallelic complementing stocks of Drosophila in which the third chromosomes were co-isogenic. Since all lines were co-isogenic for the XDH and AO structural genes, any variation in these enzymes seen when comparing these stocks must have been produced by post-translational modification by mal. We examined the XDH and AO proteins in these stocks by gel-sieving electrophoresis, a procedure that permits independent characterization of a protein's charge and shape, and is capable of discriminating many variants not detected in routine electrophoresis. In every mal heteroallelic combination, there is a significant alteration in protein shape, when compared to wild type. The magnitude of differences in shape of XDH and AO is correlated both with differences in their enzyme activities and with differences in their thermal stabilities. As the body of this variation appears heritable, any functional differences resulting from these variants are of real genetic and evolutionary interest. A similar post-translational modification of XDH and AO by yet another locus, lxd, was subsequently documented in an analogous manner. The pattern of electrophoretic differences produced by mal and lxd modification is similar to that reported for electrophoretic "alleles" of XDH in natural populations. The implication is that heritable variation in electrophoretic mobility at these two enzyme loci, and potentially at other loci, is not necessarily allelic to the structural gene loci.

Documentos Relacionados