Primary charge-recombination in an artificial photosynthetic reaction center

AUTOR(ES)
FONTE

National Academy of Sciences

RESUMO

Photoinduced primary charge-separation and charge-recombination are characterized by a combination of time-resolved optical and EPR measurements of a fullerene-porphyrin-linked triad that undergoes fast, stepwise charge-separation processes. The electronic coupling for the energy-wasting charge recombination is evaluated from the singlet-triplet electronic energy gap in the short-lived, primary charge-separated state. The electronic coupling is found to be smaller by ≈40% than that for the primary charge-separation. This inhibition of the electronic interaction for the charge-recombination to excited triplet state largely results from a symmetry-broken electronic structure modulated by configuration interaction between 3(b1u,b3g) and 3(au, b3g) electronic states of the free-base porphyrin.

Documentos Relacionados