Probing the conformational changes in 5.8S, 18S and 28S rRNA upon association of derived subunits into complete 80S ribosomes.

AUTOR(ES)
RESUMO

The participation of 18S, 5.8S and 28S ribosomal RNA in subunit association was investigated by chemical modification and primer extension. Derived 40S and 60S ribosomal subunits isolated from mouse Ehrlich ascites cells were reassociated into 80S particles. These ribosomes were treated with dimethyl sulphate and 1-cyclohexyl-3-(morpholinoethyl) carbodiimide metho-p-toluene sulfonate to allow specific modification of single strand bases in the rRNAs. The modification pattern in the 80S ribosome was compared to that of the derived ribosomal subunits. Formation of complete 80S ribosomes altered the extent of modification of a limited number of bases in the rRNAs. The majority of these nucleotides were located to phylogenetically conserved regions in the rRNA but the reactivity of some bases in eukaryote specific sequences was also changed. The nucleotides affected by subunit association were clustered in the central and 3'-minor domains of 18S rRNA as well as in domains I, II, IV and V of 5.8/28S rRNA. Most of the bases became less accessible to modification in the 80S ribosome, suggesting that these bases were involved in subunit interaction. Three regions of the rRNAs, the central domain of 18S rRNA, 5.8S rRNA and domain V in 28S rRNA, contained bases that showed increased accessibility for modification after subunit association. The increased reactivity indicates that these regions undergo structural changes upon subunit association.

Documentos Relacionados