Processing and membrane topology of the spike proteins G1 and G2 of Uukuniemi virus.

AUTOR(ES)
RESUMO

The membrane glycoproteins G1 and G2 of the members of the Bunyaviridae family are synthesized as a precursor from a single open reading frame. Here, we have analyzed the processing and membrane insertion of G1 and G2 of a member of the Phlebovirus genus, Uukuniemi virus. By expressing C-terminally truncated forms of the p10 precursor containing the whole of G1 and decreasing portions of G2, we found that processing in BHK21 cells occurred with an efficiency of about 50% if G1 was followed by 50 residues of G2, while complete processing occurred if 98, 150, or 200 residues of G2 were present. Surprisingly, processing of all truncated G2 forms was less efficient in HeLa cells. Proteinase K treatment of microsomes isolated from infected cells indicated that the C terminus of G1 is exposed on the cytoplasmic face. Using G1 tail peptide antisera, the tail was likewise found by immunofluorescence to be exposed on the cytoplasmic face in streptolysin O-permeabilized cells. By introducing stop codons at various positions of the G1 tail and at the natural cleavage site between G1 and G2 and expressing these mutants in BHK cells, we found that no further processing of the G1 C terminus occurred following cleavage of G2 by the signal peptidase. This was also supported by the finding that an antiserum raised against a peptide corresponding to the region immediately upstream from the G2 signal sequence reacted in immunoblotting with G1 from virions. Finally, we show that both G1 and G2 are palmitylated. Taken together, these results show that processing of p10 of Uukuniemi virus occurs cotranslationally at only one site, i.e., downstream of the internal G2 signal sequence. G1 and G2 are inserted as type I proteins into the lipid bilayer, leaving the G1 tail exposed on the cytoplasmic face of the membrane. Since the G2 tail is only 5 residues long, the G1 tail is likely to be responsible for the interaction with the nucleoproteins during the budding process, in addition to harboring a Golgi localization signal.

Documentos Relacionados