Processing of gag precursor polyprotein of human T-cell leukemia virus type I by virus-encoded protease.

AUTOR(ES)
RESUMO

The biological activity encoded in the putative protease gene (pro) of human T-cell leukemia virus type I was investigated by using a vaccinia virus expression vector. The 53-kilodalton gag precursor polyprotein was processed into the mature p19, p24, and p15 gag proteins when the gag and protease-coding sequence was expressed under the control of a vaccinia virus promoter, suggesting that the protease may be synthesized through the mechanism of ribosomal frame shifting. The processing defect of a protease mutant could be complemented by cointroduction of a wild-type construct into the cell, demonstrating that the pro gene encodes the biologically active protease molecules which are capable of processing the gag precursor polyprotein in vivo in trans. A study involving the use of a variety of mutants constructed in vitro revealed that the protease consists of a nonessential carboxy-terminal region and a part essential for its activity, including the putative catalytic residue, aspartic acid. Furthermore, a cluster of adenine residues positioned at the overlapping region between the gag and pro genes was shown to be involved in the ribosomal frameshifting event for the synthesis of protease. To mimic the formation of the 76-kilodalton gag-pro precursor polyprotein formed by ribosomal slipping, the coding frames of the gag and pro gene were adjusted. The processing of the gag-pro precursor polyprotein depended on an intact protease gene, implying that a cis-acting function of human T-cell leukemia virus type I protease may be necessary to trigger the initial cleavage event that leads to the release of protease from the precursor protein.

Documentos Relacionados