Production of a conserved adhesin by the human gastroduodenal pathogen Helicobacter pylori.

AUTOR(ES)
RESUMO

An adhesin protein with an approximate subunit molecular weight of 19,600 has been purified from the gastric pathogen Helicobacter pylori. The protein was loosely associated with the cell surface and was removed by gentle stirring or shearing. Released aggregates of the 19.6-kDa protein were removed from suspension by ultracentrifugation and separated from contaminating membranes by washing in 1.0% sodium dodecyl sulfate (SDS). The SDS-insoluble protein was purified further by Mono Q anion-exchange column chromatography. Electron microscopy of the purified adhesin demonstrated that it formed amorphous aggregates similar to the material attached to the bacterial cells and that the aggregates were morphologically distinct from typical fimbriae. Western blot (immunoblot) analysis with antiserum raised against the purified protein from one strain reacted with a protein with a similar subunit molecular weight present in all nine strains of H. pylori examined, but the protein was not present in other Helicobacter species examined. The N-terminal sequences of the 19.6-kDa protein purified from three different strains of H. pylori were identical for the first 28 amino acids, with the 10 amino-terminal residues showing limited sequence homology with the TcpA pilus protein of Vibrio cholerae. The H. pylori 19.6-kDa protein associated both with human and rabbit erythrocytes and with human buccal epithelial cells. Polystyrene microspheres coated with the protein agglutinated human, horse, and rabbit erythrocytes, suggesting that this protein species could mediate adhesion between H. pylori and eucaryotic cells. This ability to act as an adhesin may make this protein an important virulence factor for H. pylori and hence a potential target for a vaccine and therapy.

Documentos Relacionados