Properties and function of the proton-translocating adenosine triphosphatase of Clostridium perfringens.

AUTOR(ES)
RESUMO

Growth of Clostridium perfringens was inhibited by compounds which dissipate or prevent the formation of electrochemical proton gradients. Membrane vesicles prepared from this organism exhibited Mg2+-dependent adenosine triphosphatase (ATPase) activity sensitive to N,N'-dicyclohexylcarbodiimide. Mg2+-ATPase activity was optimal of 50 degrees C, but no discrete pH optimum was observed. Adenosine triphosphate-dependent quenching of the fluorescence of the weak base quinacrine by everted membrane vesicles suggested that the Mg2+-ATPase is a proton pump capable of generating an electrochemical proton gradient. Adenosine triphosphate-dependent transport of Ca2+ by everted vesicles was sensitive to uncouplers and inhibitors of the Mg2+-ATPase.

Documentos Relacionados