Proposed active site domain in estrogen sulfotransferase as determined by mutational analysis.

AUTOR(ES)
RESUMO

Point mutations were selectively introduced into a cDNA for guinea pig estrogen sulfotransferase (gpEST); each construct was then expressed in Chinese hamster ovary K1 cells. The molecular site chosen for study is a conserved GXXGXXK sequence that resembles the P-loop-type nucleotide-binding motif for ATP- and GTP-binding proteins and is located near the C terminus of all steroid and phenol(aryl) sulfotransferases for which the primary structures are known. Preliminary experiments demonstrated that the GXXGXXK motif is essential for binding the activated sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). The present study was undertaken to ascertain the relative importance of each individual residue of the motif. While the mutation of a single motif residue had little effect on the interaction between gpEST and PAPS as determined by kinetic analysis and photoaffinity labeling, the mutation of any two residues in concert resulted in an approximate 10-fold increase in the Km for PAPS and reduced photoaffinity labeling. The mutation of all three motif residues resulted in an inactive enzyme and complete loss of photoaffinity labeling. Interestingly, several mutants also displayed a striking effect on the Km for the steroid substrate; double mutants, again, demonstrated greater perturbations (8- to 28-fold increase) than did single mutants. Unexpectedly, whereas the mutation of nonmotif residues had a negligible effect on the Km for PAPS, a marked increase in the Km for the estrogen substrate ( > 30-fold) was noted. On the basis of these findings, it is concluded that the sequence GISGDWKN within the C-terminal domain of gpEST represents a critical component of the active site.

Documentos Relacionados