Pseudohomothallism and Evolution of the Mating-Type Chromosome in Neurospora Tetrasperma

AUTOR(ES)
RESUMO

Ascospores of Neurospora tetrasperma normally contain nuclei of both mating-type idiomorphs (a and A), resulting in self-fertile heterokaryons (a type of sexual reproduction termed pseudohomothallism). Occasional homokaryotic self-sterile strains (either a or A) behave as heterothallics and, in principle, provide N. tetrasperma with a means for facultative outcrossing. This study was conceived as an investigation of the population biology of N. tetrasperma to assess levels of intrastrain heterokaryosis (heterozygosity). The unexpected result was that the mating-type chromosome and autosomes exhibited very different patterns of evolution, apparently because of suppressed recombination between mating-type chromosomes. Analysis of sequences on the mating-type chromosomes of wild-collected self-fertile strains revealed high levels of genetic variability between sibling A and a nuclei. In contrast, sequences on autosomes of sibling A and a nuclei exhibited nearly complete homogeneity. Conservation of distinct haplotype combinations on A and a mating-type chromosomes in strains from diverse locations further suggested an absence of recombination over substantial periods of evolutionary time. The suppression of recombination on the N. tetrasperma mating-type chromosome, expected to ensure a high frequency of self fertility, presents an interesting parallel with, and possible model for studying aspects of, the evolution of mammalian sex chromosomes.

Documentos Relacionados