Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus.

AUTOR(ES)
RESUMO

Herpes simplex virus establishes latency in nervous tissue in which it is maintained for the life of the mammalian host, with occasional reactivation leading to subsequent spread. Latency-associated transcripts are abundant during latency, but viral proteins and productive cycle RNAs have not been detected. Using sensitive, quantitative PCR assays, we have quantified certain viral RNAs specific to productive-cycle genes in mouse ganglia latently infected with herpes simplex virus type 1. Sense-strand RNA specific to the essential immediate-early gene, ICP4, was present in most ganglia in variable amounts relative to the amount of viral DNA, with one to seven molecules of RNA per viral genome in about 20% of ganglia. In contrast, the amount of latency-associated transcripts was much less variable, at an average of 4 x 10(4) molecules per viral genome. The amounts of ICP4-specific RNA were similar at 30 and 60 days postinfection, and at least some of these transcripts initiated within a region consistent with utilization of the ICP4 promoter. RNA specific to the thymidine kinase gene, whose transcription in productive infection is dependent on ICP4, was present in latently infected ganglia at a maximum level of 3.2 x 10(6) molecules per ganglion (500 molecules per viral genome). ICP4-specific and tk-specific RNAs measured from the same samples showed a positive correlation extending over 2 orders of magnitude. We conclude that ICP4-specific RNA is expressed in the absence of detectable reactivation and discuss possible implications of our findings for latent gene expression.

Documentos Relacionados