Quantitative trait loci influencing cholesterol and phospholipid phenotypes map to chromosomes that contain genes regulating blood pressure in the spontaneously hypertensive rat.

AUTOR(ES)
RESUMO

The frequent coincidence of hypertension and dyslipidemia suggests that related genetic factors might underlie these common risk factors for cardiovascular disease. To investigate whether quantitative trait loci (QTLs) regulating lipid levels map to chromosomes known to contain genes regulating blood pressure, we used a genome scanning approach to map QTLs influencing cholesterol and phospholipid phenotypes in a large set of recombinant inbred strains and in congenic strains derived from the spontaneously hypertensive rat and normotensive Brown-Norway (BN.Lx) rat fed normal and high cholesterol diets. QTLs regulating lipid phenotypes were mapped by scanning the genome with 534 genetic markers. A significant relationship (P < 0.00006) was found between basal HDL2 cholesterol levels and the D19Mit2 marker on chromosome 19. Analysis of congenic strains of spontaneously hypertensive rat indicated that QTLs regulating postdietary lipid phenotypes exist also on chromosomes 8 and 20. Previous studies in the recombinant inbred and congenic strains have demonstrated the presence of blood pressure regulatory genes in corresponding segments of chromosomes 8, 19, and 20. These findings provide support for the hypothesis that blood pressure and certain lipid subfractions can be modulated by linked genes or perhaps even the same genes.

Documentos Relacionados