Recombination of Salmonella phase 1 flagellin genes generates new serovars.

AUTOR(ES)
RESUMO

To determine the evolutionary mechanisms generating serotypic diversity in Salmonella strains, we sequenced the central, antigen-determining part of the phase 1 flagellin gene (fliC) in strains of several serovars for which estimates of chromosomal genomic relatedness had been obtained by multilocus enzyme electrophoresis. The nucleotide sequence of this region was identical in several chromosomally divergent strains of Salmonella heidelberg (phase 1 antigen r) but differed by 19% from the corresponding and similarly invariant sequence in strains of the closely related serovar Salmonella typhimurium (phase 1 antigen i). Mutational drift of the sequence present in the common ancestor is unlikely to have generated the difference between the phase 1 flagellins of these two serovars, which we attribute instead to a recombination event. This interpretation is supported by evidence that Salmonella strains of very diverse chromosomal backgrounds but similar phase 1 antigens may have closely similar nucleotide sequences for this highly polymorphic region. We suggest that lateral transfer and recombination of phase 1 flagellin genes is a major evolutionary mechanism generating new Salmonella serovars.

Documentos Relacionados