Reduced Mg2+ block of N-methyl-D-aspartate receptor-mediated synaptic potentials in developing visual cortex.

AUTOR(ES)
RESUMO

Molecular cloning has demonstrated a diversity of artificially expressed N-methyl-D-aspartate (NMDA) receptors, implying a similar diversity of naturally occurring NMDA receptors in situ. Particularly significant was the success in expression of NMDA receptor classes exhibiting various sensitivities to Mg2+ block, a voltage-dependent channel blockade by Mg2+ that is essential to NMDA receptor functioning. Release from Mg2+ block often allows or facilitates the occurrence of long-term potentiation, a form of synaptic plasticity. Here we show that in the immature visual cortex, which is more susceptible to long-term potentiation than adult visual cortex, synaptically activated NMDA receptors, unlike those in the adult, have varying but clearly reduced sensitivities to Mg2+ block. We propose that the initially expressed, later-eliminated NMDA receptors exhibiting a reduced Mg2+ block may underlie the greater susceptibility to plasticity in the immature neocortex.

Documentos Relacionados