Reflex splanchnic nerve stimulation increases levels of proenkephalin A mRNA and proenkephalin A-related peptides in the rat adrenal medulla.

AUTOR(ES)
RESUMO

The effect of reflex splanchnic nerve stimulation on proenkephalin A biosynthesis was investigated in the rat adrenal medulla. Tissue levels of native [Met5]enkephalin-like immunoreactivity (IR) (measured by direct RIA of tissue extracts), cryptic [Met5]enkephalin-like IR (calculated as the increase in [Met5]enkephalin-like IR detected in tissue extracts after sequential digestion with trypsin and carboxypeptidase B), and proenkephalin A mRNA were determined in adrenal medulla from rats sacrificed at various times after a period of insulin-induced hypoglycemia. Two hours of insulin hypoglycemia, which produced intense reflex stimulation of the splanchnic nerves as evidenced by a 55% decrease in the adrenal medulla catecholamine levels, resulted in a 3-fold increase in proenkephalin A mRNA levels in this tissue. The proenkephalin A mRNA levels reached a maximum 15-fold increase over control values 24 hr after this period of hypoglycemic stress and then gradually declined with an approximate half-life of 4 days. Native and cryptic [Met5]enkephalin-like IR had increased 9-fold and 12-fold, respectively, 24 hr after this period of hypoglycemia, and both demonstrated maximum increases of 130-fold and 50-fold, respectively, after 96 hr. Combined pretreatment (i.p. administration) with the ganglionic and muscarinic blocking agents chlorisondamine (5 mg/kg of body weight) and atropine (1 mg/kg) blocked the increase in levels of proenkephalin A mRNA seen in the rat adrenal medulla following insulin hypoglycemia. These data indicate that reflex splanchnic nerve discharge stimulates proenkephalin biosynthesis, probably at the level of gene expression.

Documentos Relacionados