Regulation of Fab1 Phosphatidylinositol 3-Phosphate 5-Kinase Pathway by Vac7 Protein and Fig4, a Polyphosphoinositide Phosphatase Family Member

AUTOR(ES)
FONTE

The American Society for Cell Biology

RESUMO

The Saccharomyces cerevisiae FAB1 gene encodes the sole phosphatidylinositol 3-phosphate [PtdIns(3)P] 5-kinase responsible for synthesis of the polyphosphoinositide PtdIns(3,5)P2. VAC7 encodes a 128-kDa transmembrane protein that localizes to vacuolar membranes. Both vac7 and fab1 null mutants have dramatically enlarged vacuoles and cannot grow at elevated temperatures. Additionally, vac7Δ mutants have nearly undetectable levels of PtdIns(3,5)P2, suggesting that Vac7 functions to regulate Fab1 kinase activity. To test this hypothesis, we isolated a fab1 mutant allele that bypasses the requirement for Vac7 in PtdIns(3,5)P2 production. Expression of this fab1 allele in vac7Δ mutant cells suppresses the temperature sensitivity, vacuolar morphology, and PtdIns(3,5)P2 defects normally exhibited by vac7Δ mutants. We also identified a mutant allele of FIG4, whose gene product contains a Sac1 polyphosphoinositide phosphatase domain, which suppresses vac7Δ mutant phenotypes. Deletion of FIG4 in vac7Δ mutant cells suppresses the temperature sensitivity and vacuolar morphology defects, and dramatically restores PtdIns(3,5)P2 levels. These results suggest that generation of PtdIns(3,5)P2 by the Fab1 lipid kinase is regulated by Vac7, whereas turnover of PtdIns(3,5)P2 is mediated in part by the Sac1 polyphosphoinositide phosphatase family member Fig4.

Documentos Relacionados