Regulation of protoxin synthesis in Bacillus thuringiensis.

AUTOR(ES)
RESUMO

A derivative of Bacillus thuringiensis subsp. kurstaki (HD-1) formed parasporal inclusions at 25 degrees C, but not at 32 degrees C. This strain differed from the parent only in the loss of a 110-megadalton (Md) plasmid, but plasmid and chromosomal copies of protoxin genes were present in both strains. On the basis of temperature shift experiments, the sensitive period appeared to be during midexponential growth, long before the time of protoxin synthesis at 3 to 4 h after the end of exponential growth. The conditional phenotype could be transferred by cell mating to naturally acrystalliferous Bacillus cereus. In all such cases, a 29-Md protoxin -encoding plasmid was transferred, but this plasmid alone was barely sufficient for protoxin synthesis. Protoxin production increased to detectable levels, but well below those of the parental donor strain, by simultaneous transfer of a 44-Md protoxin -encoding plasmid. Transfer of a 5-Md plasmid with the two larger protoxin -coding plasmids resulted in a protoxin synthesis level approaching that of the donor strain. A role for some of the cryptic plasmids of kurstaki in parasporal body formation was implied. In contrast, a closely related B. thuringiensis strain, HD73 , produced crystals at both 25 and 32 degrees C even when the capacity was transferred on a 50-Md plasmid to B. cereus. The amount of protoxin produced in these B. cereus transcipients , however, was somewhat less than that produced in the parental strain HD73 , implying that catabolic differences, gene dosage, or the presence of a chromosomal gene (or a combination of these) may be necessary for maximum production. A regulatory component of the 29-Md plasmid appeared to be trans-acting and dominant since B. cereus transcipients containing the 29-Md plasmid from kurstaki and the 50-Md plasmid from HD73 produced more protoxin at 25 degrees C than at 30 degrees C. Similar results were obtained when protoxin synthetic capacity was transferred from B. thuringiensis subsp. israelensis to the conditional B. thuringiensis subsp. kurstaki strain.

Documentos Relacionados