Regulation of the beta-stimulation of the Na(+)-K+ pump current in guinea-pig ventricular myocytes by a cAMP-dependent PKA pathway.

AUTOR(ES)
RESUMO

1. The whole-cell patch-clamp technique was employed with the free intracellular [Ca2+] fixed at 1.4 microM in order to study the isoprenaline (Iso)-induced increase in the Na(+)-K+ pump current (Ip) in acutely isolated guinea-pig ventricular myocytes. 2. The non-specific protein kinase inhibitor, H-7, eliminated the stimulatory effect of Iso, suggesting a phosphorylation step is involved in the beta-agonist stimulation of Ip. 3. H-7 or the phosphatase inhibitor calyculin A individually had no effect on basal Ip; however, when Ip was first increased by Iso, H-7 inhibited and calyculin A further increased Ip. This suggests phosphorylation is not important to the basal regulation of Ip, but does have an effect during beta-stimulation. 4. The Iso-induced increase in Ip could be mimicked by adding the membrane-permanent cAMP analogue chlorophenylthio-cAMP, blocking cAMP degradation with IBMX or stimulating cAMP production with forskolin. Alternatively the protein kinase A inhibitor PKI blocked the stimulatory effect of Iso. This suggests the Iso-induced phosphorylation responsible for increasing Ip is mediated by cAMP, which then activates protein kinase A (PKA). 5. We conclude that the beta-agonist-induced increase in Ip in the presence of high intracellular [Ca2+] is mediated by a phosphorylation step via the cAMP-dependent PKA pathway. During beta-stimulation, this increase in active Na(+)-K+ transport can serve to offset the effects of increases in passive membrane conductances.

Documentos Relacionados