Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258.

AUTOR(ES)
RESUMO

Regulation of the cadA cadmium and zinc resistance determinant of Staphylococcus aureus plasmid pI258 was demonstrated by using gene fusions and direct measurements of transcription. In growth experiments, cells harboring the intact cadA operon were induced with different cations and challenged by an inhibitory concentration of ZnCl2, a substrate of the CadA resistance system. Uninduced cells did not grow for 8 h after Zn2+ addition, whereas induced cells grew in the presence Zn2+. Cd2+ was a strong inducer, and Bi3+ and Pb2+ also induced well; Co2+ and Zn2+ were weak inducers. A translational beta-lactamase fusion to the cadA gene showed the same induction specificity as that seen with growth experiments with the intact cadA operon. A short beta-lactamase transcriptional fusion to the cadC gene also showed the same pattern of induction, establishing that the cadC gene was not involved in regulation. In Northern (RNA) blot hybridization experiments, a cadmium-inducible, 2.6-kb, operon-length transcript was detected. Primer extension experiments determined that Cd(2+)-inducible transcription of the cadA operon begins at nucleotides 676 and 677 of the published sequence (G. Nucifora, L. Chu, T. K. Misra, and S. Silver, Proc. Natl. Acad. Sci. USA 86: 3544-3548, 1989).

Documentos Relacionados