Regulation of the interferon-inducible IFI-78K gene, the human equivalent of the murine Mx gene, by interferons, double-stranded RNA, certain cytokines, and viruses.

AUTOR(ES)
RESUMO

The interferon-inducible gene (IFI-78K gene) that codes for a human protein, p78, of 78,000 Mr is the equivalent of the mouse Mx gene encoding Mx protein. The IFI-78K gene is located on chromosome 21 together with the alpha/beta interferon (IFN-alpha/beta) receptor. The p78 protein is important since it may be involved in resistance to influenza viruses. The regulation of the IFI-78K gene was studied in human diploid cells by using a cDNA probe to p78 mRNA and specific monoclonal antibodies to p78 protein. The IFI-78K gene, a normally quiescent gene, is transcriptionally regulated by IFN-alpha, and its induction does not require protein synthesis. The rate of transcription measured in a run-on assay increased rapidly but transiently. The level of p78 mRNA increased up to 8 h, declining slowly afterwards. The p78 protein, undetectable in untreated cells, accumulated up to 16 h, and its amount remained stable for at least 36 h after the addition of IFN-alpha. Cytokines such as tumor necrosis factor, interleukin-1 alpha, and interleukin-1 beta activated the IFI-78K gene at concentrations comparable to that of IFN-alpha. However, gene activation by these cytokines required protein synthesis. Poly(rI)-poly(rC) induced the IFI-78K gene directly at the transcriptional level without requirement for protein synthesis. Newcastle disease virus, influenza virus, and to a lesser extent vesicular stomatitis virus also induced the IFI-78K gene in the absence of any protein synthesis. Induction of transcription by viruses was markedly enhanced by pretreatment of cells with IFN-gamma (which by itself is a poor inducer of the IFI-78K gene), resulting in accumulation of p78 protein during the course of infection; this suggests that IFN-gamma programs cells to full antiviral activity upon virus infection.

Documentos Relacionados