Relationship between Proline and Abscisic Acid in the Induction of Chilling Tolerance in Maize Suspension-Cultured Cells.

AUTOR(ES)
RESUMO

Both proline and abscisic acid (ABA) induce chilling tolerance in chilling-sensitive plants. However, the relationship between proline and ABA in the induction of chilling tolerance is unclear. We compared the time course of the increase in chilling tolerance induced by proline and ABA, and the time course of the uptake of both into the cultured cells of maize (Zea mays L. cv Black Mexican Sweet) at 28[deg]C. The plateau of proline-induced chilling tolerance preceded by 12 h the plateau of ABA-induced chilling tolerance. The uptake of exogenous ABA into the cells reached a plateau in 1 h, whereas the uptake of exogenous proline gradually increased throughout the 24-h culture period. Although the proline content in ABA-treated cells was 2-fold higher than in untreated cells at the end of the 24-h ABA treatment at 28[deg]C, the correlation between the endogenous free proline content and the chilling tolerance in the ABA-treated cells was insignificant. Isobutyric acid treatment, which resulted in a larger accumulation of proline in the cells than ABA treatment, did not increase chilling tolerance. The induction of chilling tolerance by proline and ABA appeared to be additive. Cycloheximide inhibited ABA-induced chilling tolerance, but it did not inhibit proline-induced chilling tolerance. Newly synthesized proteins accumulate in ABA-treated cells at 28[deg]C while the chilling tolerance is developing (Z. Xin and P.H. Li [1993] Plant Physiol 101: 277-284), but none of these proteins were observed in the proline-treated cells. Results suggest that proline and ABA induce chilling tolerance in maize cultured cells by different mechanisms.

Documentos Relacionados