Retinoic acid repression of cell-specific helix-loop-helix-octamer activation of the calcitonin/calcitonin gene-related peptide enhancer.

AUTOR(ES)
RESUMO

We have investigated the mechanism underlying repression of calcitonin/calcitonin gene-related peptide (CT/CGRP) gene expression by retinoic acid. Retinoic acid treatment of the CA77 thyroid C-cell line decreased CT/CGRP promoter activity two- to threefold, which correlates well with the decrease in calcitonin and CGRP mRNA levels. Repression is mediated through the nuclear retinoic acid receptors (RAR) on the basis of the retinoid specificity, the sensitivity of repression (half-maximal repression at 0.2 nM), and the additional repression caused by cotransfection of an alpha-RAR expression vector. The sequences required for retinoic acid repression were localized to an 18-bp element containing cell-specific enhancer activity. The enhancer binds helix-loop-helix (HLH) and octamer transcription factors that act synergistically to activate transcription. Retinoic acid repression requires both these factors since mutations in either motif resulted in the loss of repression. Furthermore, repression was observed only in cell lines containing enhancer activity. We have used electrophoretic mobility shift assays to show that repression does not involve direct DNA binding of RAR or RAR-retinoid X receptor heterodimers. Instead, repression appears to involve interactions with the stimulatory enhancer factors. Following retinoic acid treatment, there was a specific decrease in an enhancer complex containing both HLH and octamer proteins. Formation of the HLH-octamer complex was also specifically blocked by the addition of exogenous RAR-retinoid X receptor protein. These results demonstrate that RAR can repress CT/CGRP gene transcription by interfering with combinatorial activation by cell-specific HLH and octamer proteins.

Documentos Relacionados