Retrovirus-mediated transfer of human adenosine deaminase gene sequences into cells in culture and into murine hematopoietic cells in vivo.

AUTOR(ES)
RESUMO

Deficiency of the enzyme adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4; ADA) leads to severe combined immunodeficiency, a disorder that potentially could be corrected by gene transfer into hematopoietic cells. We have constructed retroviruses containing human ADA cDNA and a dominant selectable marker, a mutated dihydrofolate reductase gene (DHFR*) encoding methotrexate resistance. Human ADA cDNA was inserted alone (DHFR*-ADA) or with a simian virus 40 (SV40) promoter (DHFR*-SVADA). Although NIH 3T3 cells infected with either construct produced human ADA activity, substantially greater levels were attained with DHFR*-SVADA. Infection of murine lymphoid cells in culture with DHFR*-SVADA led to expression of human enzyme at a level well above the mouse endogenous level. ADA activity was also increased after infection of a human ADA-deficient B-cell line. Lethally irradiated mice that were reconstituted with syngeneic marrow infected with the DHFR*-SVADA virus contained unrearranged, integrated proviral DNA in total spleen DNA or in spleen hematopoietic stem cell (CFU-S)-derived colonies. Nevertheless, no human ADA was detectable. RNA analysis showed relatively low and variable expression from the retroviral long terminal repeat, and no detectable expression from the internal SV40 promoter. These data suggest that intrinsic biologic differences exist between cultured cells and CFU-S in vivo.

Documentos Relacionados