Ribonucleic Acid Polymerase in a Thermosensitive Sporulation Mutant (ts-4) of Bacillus subtilis

AUTOR(ES)
RESUMO

Partially synchronized cultures of a Bacillus subtilis thermosensitive sporulation mutant (ts-4) and the 168 try−try− (168tt) parental strain were infected with the virulent phage φe at various times during their growth cycle at 30 and 42 C (permissive and restrictive temperatures, respectively). It was shown that at the restrictive temperature the burst size in the parental strain was two- to threefold lower than in the ts-4 mutant. No such difference was observed at the permissive temperature. However, the time at which this difference was observed excludes a correlation between the burst size and initiation of the sporulation process. It was further found that the capacity to transcribe in vitro phage φe deoxyribonucleic acid by partially purified ribonucleic acid (RNA) polymerase from both strains decreased sharply if the source of enzyme was sporulating cells instead of vegetative ones. However, a similar decrease, although to a lesser extent, was observed with the RNA polymerase isolated from stationary-phase cells of the ts-4 mutant grown at the nonpermissive temperature, or with the enzyme derived from several other zero-stage sporulation mutants. At no time was a structural modification in the β subunits of the RNA polymerase observed during growth of the sporulating bacteria. We have also shown that, in addition to the relatively low specific activity of the RNA polymerase, the level of the intracellular protease activity is about 15-fold lower in the ts-4 mutant grown at the restrictive temperature than that of the parental strain grown at the same temperature. At the permissive temperature no such difference was observed between these two strains. However, the present data do not allow us to establish a correlation among the low content of intracellular protease, the weak specific activity of the RNA polymerase, and the loss of the sporulation capacity in the ts-4 mutant grown at the restrictive temperature.

Documentos Relacionados