Ric1p and the Ypt6p GTPase Function in a Common Pathway Required for Localization of Trans-Golgi Network Membrane Proteins

AUTOR(ES)
FONTE

The American Society for Cell Biology

RESUMO

In Saccharomyces cerevisiae, clathrin is necessary for localization of trans-Golgi network (TGN) membrane proteins, a process that involves cycling of TGN proteins between the TGN and endosomes. To characterize further TGN protein localization, we applied a screen for mutations that cause severe growth defects in combination with a temperature-sensitive clathrin heavy chain. This screen yielded a mutant allele of RIC1. Cells carrying a deletion of RIC1 (ric1Δ) mislocalize TGN membrane proteins Kex2p and Vps10p to the vacuole. Delivery to the vacuole occurs in ric1Δ cells also harboring end3Δ to block endocytosis, indicative of a defect in retrieval to the TGN rather than sorting to endosomes. SYS1, originally discovered as a multicopy suppressor of defects caused by the absence of the Rab GTPase YPT6, was identified as a multicopy suppressor of ric1Δ. Further comparison of ric1Δ and ypt6Δ cells demonstrated identical phenotypes. Multicopy plasmids expressing v-SNAREs Gos1p or Ykt6p, but not other v- and t-SNAREs, partially suppressed phenotypes of ric1Δ and ypt6Δ cells. SLY1–20, a dominant activator of the cis-Golgi network t-SNARE Sed5p, also functioned as a multicopy suppressor. Because Gos1p and Ykt6p interact with Sed5p, these results raise the possibility that TGN membrane protein localization requires Ric1p- and Ypt6p-dependent retrieval to the cis-Golgi network.

Documentos Relacionados