RNA-binding properties of a translational activator, the adenovirus L4 100-kilodalton protein.

AUTOR(ES)
RESUMO

The adenovirus L4 100-kDa nonstructural protein (100K protein) is required for efficient initiation of translation of viral late mRNA species during the late mRNA species during the late phase of infection (B. W. Hayes, G. C. Telling, M. M. Myat, J. F. Williams, and S. J. Flint, J. Virol. 64:2732-2742, 1990). The RNA-binding properties of this protein were analyzed in an immunoprecipitation assay with the 100K-specific monoclonal antibody 2100K-1 (C. L. Cepko and P. A. Sharp, Virology 129:137-154, 1983). Coprecipitation of the 100K protein and 3H-infected cell RNA was demonstrated. The RNA-binding activity of the 100K protein was inhibited by single-stranded DNA but not by double-stranded DNA, double-stranded RNA, or tRNA. Competition assays were used to investigate the specificity with which the 100K protein binds to RNA in vitro. Although the protein exhibited a strong preference for the ribohomopolymer poly(U) or poly(G), no specific binding to viral mRNA species could be detected; uninfected or adenovirus type 5-infected HeLa cell poly(A)-containing and poly(A)-lacking RNAs were all effective inhibitors of binding of the protein to viral late mRNA. Similar results were obtained when the binding of the 100K protein to a single, in vitro-synthesized L2 mRNA was assessed. The poly(U)-binding activity of the 100K protein was used to compare the RNA-binding properties of the 100K protein prepared from cells infected by adenovirus type 5 and the H5ts1 mutant (B. W. Hayes, G. C. Telling, M. M. Myat, J. F. Williams, and S. J. Flint, J. Virol. 64:2732-2742, 1990). A temperature-dependent decrease in H5ts1 100K protein binding was observed, correlating with the impaired translational function of this protein in vivo. By contrast, wild-type 100K protein RNA binding was unaffected by temperature. These data suggest that the 100K protein acts to increase the translational efficiency of viral late mRNA species by a mechanism that involves binding to RNA.

Documentos Relacionados