Role of autocide AMI in development of Myxococcus xanthus.

AUTOR(ES)
RESUMO

A new developmental mutant of Myxococcus xanthus has been isolated by screening TnV insertion mutants for AMI-dependent development in submerged culture. This mutant (ER304) aggregated and sporulated on agar surfaces but required at least 3.8 micrograms of autocide AMI per ml for development in submerged cultures. Spore rescue of ER304 was obtained with the saturated, monounsaturated, and diunsaturated fatty acid fractions of AMI, with specific activities of 68, 115, and 700 U/mg, respectively. In addition, several model fatty acids were capable of rescuing sporulation of ER304; however, there was no correlation between specific lytic activity observed in vegetative cultures and specific rescue activity. Rescue of ER304 was effected during the first ca. 12 h after the initiation of starvation conditions; after this time, addition of AMI or model fatty acids killed the cells. Supernatant fluids of ER304 rescued development in dsg mutants (e.g., DK3260) in submerged cultures, but dsg mutant supernatant fluids were incapable of rescuing ER304 development. The data presented in this article support the idea that the primary mechanism of rescue by AMI is not via lysis, although developmental lysis may be an indirect result of the rescue event. A membrane permeability model is presented to explain the role of autocides in early developmental events in wild-type strains and in the aggregation and sporulation rescue of developmental mutants ER304 and DK3260.

Documentos Relacionados