Role of charge-transfer states in bacterial photosynthesis

AUTOR(ES)
RESUMO

Photon echo, photon-echo excitation, and “hole-burning” data recorded in the 800-990 nm region of Rhodobacter sphaeroides R26 and Rhodopseudomonas viridis reaction centers are reported. The primary process in these reaction centers, following excitation, was found to occur in ≈25 fsec; the long-wavelength band of the primary electron donor (P) was largely homogeneously broadened. In accordance with our previous explanation of hole-burning and photon-echo measurements on Rb. sphaeroides [Meech, S. R., Hoff, A. J. & Wiersma, D. A. (1985) Chem. Phys. Lett. 121, 287-292], we interpret this as resulting from a dephasing of the excitation in P into a background of strongly coupled charge-transfer states. The previously reported picosecond lifetime of the excited P state is assigned to decay of these strongly mixed states. Further, a coupling between P and an adjacent bacteriochlorophyll was observed. The extent of this coupling and the role of charge-transfer states in the functioning of reaction centers is discussed.

Documentos Relacionados