Role of protein kinase A and the serine-rich region of herpes simplex virus type 1 ICP4 in viral replication.

AUTOR(ES)
RESUMO

Efficient expression of herpes simplex virus genes requires the synthesis of functional ICP4, a nuclear phosphoprotein that contains a prominent serine-rich region between amino acids 142 and 210. Residues in this region not only are potential sites for phosphorylation but also are involved in the functions of ICP4. By comparing the growth of a virus in which this region is deleted (d8-10) with wild-type virus (KOS) in PC12 cells or PC12 cells that are deficient in cyclic AMP-dependent protein kinase (PKA), two observations were made: (i) the growth of wild-type virus was impaired by 1 to 2 orders of magnitude in the PKA-deficient cells, indicating the involvement of PKA in the growth cycle of herpes simplex virus type 1, and (ii) while the growth of d8-10 was impaired by almost 2 orders of magnitude in wild-type cells, it was not further impaired (as was that of wild-type virus) in PKA-deficient cells, implicating the region deleted in d8-10 as a possible target for cellular PKA. In trigeminal'ganglia of mice, the d8-10 mutant virus grew poorly; however, it established latency in nearly 90% of ganglia tested. Studies of the phosphorylation of wild-type and d8-10 ICP4 proteins revealed that the serine-rich region is a major determinant for phosphorylation of ICP4 in vivo and that the phosphorylation state could change as a function of the PKA activity. Consistent with this observation, the serine-rich region of ICP4 was shown to be a target for PKA in vitro. While intact ICP4 was readily phosphorylated by ICP4 in vitro, the d8-10 mutant ICP4 was not. Moreover, a synthethic peptide representing a sequence in the serine tract that is predicted to be a substrate for PKA was phosphorylated by PKA in vitro, having a Km within the physiological range. These data suggest that PKA plays a role in viral growth through phosphorylation of one or more sites on the ICP4 molecule.

Documentos Relacionados