Role of tyrosine kinase and membrane-spanning domains in signal transduction by the platelet-derived growth factor receptor.

AUTOR(ES)
RESUMO

Three types of mutations were introduced into the platelet-derived growth factor (PDGF) receptor to cause a loss of PDGF-stimulated tyrosine kinase activity: (i) a point mutation of the ATP-binding site, (ii) a deletion of the carboxyl-terminal region, and (iii) replacement of the membrane-spanning sequences by analogous transmembrane sequences of other receptors. Transfectants expressing mutated receptors bind, 125I-labeled PDGF with a high affinity but had no PDGF-sensitive tyrosine kinase activity, phosphatidylinositol turnover, increase in the intracellular calcium concentration, change in cellular pH, or stimulation of DNA synthesis. However, PDGF-induced receptor down regulation was normal in the mutant cells. These results indicate that the transmembrane sequence has a specific signal-transducing function other than merely serving as a membrane anchor and that the receptor kinase activity is necessary for most responses to PDGF but is not required for receptor down regulation.

Documentos Relacionados