Simulações numéricas de Monte Carlo aplicadas no estudo das transições de fase do modelo de Ising dipolar bidimensional / Numerical Monte Carlo simulations applied to study of phase transitions in two-dimensional dipolar Ising model

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Two-dimensional spin model with nearest-neighbor ferromagnetic interaction and long-range dipolar interactions exhibit a rich phase diagram, whose characteristics have been exploited by several studies in the recent literature. Furthermore, the possibility of explain observed phenomena in ultrathin magnetic films, which have many technological applications, also motivates the study of this model. The presence of dipolar interaction term changes the ferromagnetic ground state expected for the pure Ising model to a series of striped phases, which consist of ferromagnetic domains of width $h$ with opposite magnetization. The width of the stripes depends on the ratio $\delta$ of the ferromagnetic and dipolar couplings. Monte Carlo simulations and reweighting multiple histograms techniques allow us to identify the finite-size critical temperatures of the phase transitions when $\delta=2$, which corresponds to $h=2$. We calculate, for different lattice sizes, the specific heat and susceptibility of the order parameter around the transition temperatures by means of reweighting techniques. This allows us to identify in these observables, as functions of temperature, the distinct maxima and thereby to estimate the finite-size critical temperatures with high precision. We present numerical evidence of the existence of a Ising nematic phase for large lattice sizes. Our results show that simulations need to be performed for lattice sizes at least as large as $L=48$ to clearly observe the Ising nematic phase. To access how the long-range dipolar interaction may affect physical estimates we also evaluate the integrated autocorrelation time in energy time series. This allows us to infer how severe is the critical slowing down for this system with long-range interaction and nearby thermodynamic phase transitions. The results obtained using a local update algorithm are compared with results obtained using the multicanonical algorithm.

ASSUNTO(S)

monte carlo methods algoritmo multicanônico modelo de ising dipolar bidimensional two-dimensional dipolar ising model metropolis algorithm métodos de monte carlo somatório de ewald phase transitions algoritmo de metropolis ewald summation transições de fase multicanonical algorithm

Documentos Relacionados