Simulador eletromagnético em um ambiente de grades computacionais / Eletromagnetic simulator in a grid computing environment

AUTOR(ES)
DATA DE PUBLICAÇÃO

2010

RESUMO

The aim of this work is to develop the Pre and Post-Processing stages from an electromagnetic simulation suite, called SSAR-BR, and also a grid computational environment, which permits the execution of large electromagnetic problems. The processing stage, based in the Finite Difference Time Domain (FDTD) method, has been already developed as part of a doctorate thesis made by a researcher from this department. The Pre-processing stage involves a fundamental modeling tool capable to model telecommunications devices (radiant sources, mobile terminals and antennas) and biological models (human body parts and guinea-pig). On the other hand, the Post-Processing stage permits visualizing the electromagnetic simulations results in a two and three dimensions way. Both stages were developed in Java and OpenGL languages. The parallel computational environment is based on Grid Computing paradigm which consists in software and hardware infra-structure that integrates dispersed computational resources interconnected across a network. Its purpose is to share such resources under an access control policy and establishing a scalable, low-cost and high performance computational environment. The middleware is the layer between the user and operation systems responsible to manage the Grid resources and, for this work, the UNICORE 6 was adopted. The mainly reasons were its safe and transparent access to the distributed environment and, most important, it follows the open patterns from OGF (Open Grid Forum) community

ASSUNTO(S)

eletromagnestimo computational grids (computer systems) web services simulação (computadores) modelos geométricos serviços web computação em grade (sistemas de computador) electromagnetism simulation (computer) geometric modeling

Documentos Relacionados