Snf1 Kinase Connects Nutritional Pathways Controlling Meiosis in Saccharomyces cerevisiae

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Glucose inhibits meiosis in Saccharomyces cerevisiae at three different steps (IME1 transcription, IME2 transcription, and entry into late stages of meiosis). Because many of the regulatory effects of glucose in yeast are mediated through the inhibition of Snf1 kinase, a component of the glucose repression pathway, we determined the role of SNF1 in regulating meiosis. Deleting SNF1 repressed meiosis at the same three steps that were inhibited by glucose, suggesting that glucose blocks meiosis by inhibiting Snf1. For example, the snf1Δ mutant completely failed to induce IME1 transcripts in sporulation medium. Furthermore, even when this block was bypassed by expression of IME1 from a multicopy plasmid, IME2 transcription and meiotic initiation occurred at only 10 to 20% of the levels seen in wild-type cells. The addition of glucose did not further inhibit IME2 transcription, suggesting that Snf1 is the primary mediator of glucose controls on IME2 expression. Finally, in snf1Δ cells in which both blocks on meiotic initiation were bypassed, early stages of meiosis (DNA replication and commitment to recombination) occurred, but later stages (chromosome segregation and spore formation) did not, suggesting that Snf1 controls later stages of meiosis independently from the two controls on meiotic initiation. Because Snf1 is known to activate the expression of genes required for acetate metabolism, it may also serve to connect glucose and acetate controls on meiotic differentiation.

Documentos Relacionados