Spatial differentiation in photosynthetic and non-photosynthetic membranes of Rhodopseudomonas palustris.

AUTOR(ES)
RESUMO

The cytoplasmic membrane and the photosynthetic intracytoplasmic membranes of Rhodopseudomonas palustris are spatially differentiated into regions of extremely high intramembrane-particle density (4,400 to 9,800/micron 2) and areas of lower intramembrane-particle density (2,700 to 5,900/micron 2). The high intramembrane-particle-density areas were always seen in association with photosynthetic membrane stacks. This differentiation was also seen in those areas of the cytoplasmic membrane which adhere to the underlying intracytoplasmic membranes, implying that the cytoplasmic membrane too is differentiated for photosynthesis in these regions. Changes in intramembrane-particle size distribution in response to changes in light intensity during growth were measured. We found that, as light levels were decreased from 8,500 to 100 lx, the average particle diameter in the protoplasmic face of stacked intracytoplasmic and cytoplasmic membranes increased from 8.6 to 10.3 nm. We also observed a distinct periodicity in the sizes of the intramembrane particles found in the stacked regions--7.5, 10.0, 12.5, and 15.0 nm--with the larger-size peaks becoming more pronounced as light intensity decreased. This suggests that, as light levels decrease, subunits of discrete size are being added to a core particle. A comparison of propane jet-frozen cells versus fixed, glycerinated, and then frozen cells indicated that ultrarapid freezing leads to a higher quality of fine-structure preservation than does chemical fixation followed by glycerination and conventional freezing in Freon-12 or propane. The intramembrane particles appeared to be more regular in size, lacking the deformed or jagged appearance displayed in fixed preparations.

Documentos Relacionados