Spatial Distribution of Rhodopseudomonas palustris Ecotypes on a Local Scale

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The number, spatial distribution, and significance of genetically distinguishable ecotypes of prokaryotes in the environment are poorly understood. Oda et al. (Y. Oda, B. Star, L. A. Huisman, J. C. Gottschal, and L. J. Forney, Appl. Environ. Microbiol. 69:xxx-xxx, 2003) have shown that Rhodopseudomonas palustris ecotypes were lognormally distributed along a 10-m transect and that multiple strains of the species could coexist in 0.5-g sediment samples. To extend these observations, we investigated the clonal diversity of R. palustris in 0.5-g samples taken from the corners and center of a 1-m square. A total of 35 or 36 clones were recovered by direct plating from each sample and were characterized by BOX A1R repetitive element-PCR genomic DNA fingerprinting. Isolates with fingerprint images that were ≥80% similar to each other were defined as the same genotype. Among the 178 isolates studied, 32 genotypes were identified, and each genotype contained between 1 and 40 isolates. These clusters were consistent with minor variations found in 16S rRNA gene sequences. The Shannon indices of the genotypic diversity within each location ranged from 1.08 (5 genotypes) to 2.18 (13 genotypes). Comparison of the rank abundance of genotypes found in pairs of locations showed that strains from three locations were similar to each other, with Morisita-Horn similarity coefficients ranging from 0.59 to 0.71. All comparisons involving the remaining two locations resulted in coefficients between 0 and 0.12. From these results we inferred that the patterns of ecotype diversity at the sampling site are patchy at a 1-m scale and postulated that factors such as mixing, competitive interactions, and microhabitat variability are likely to be responsible for the maintenance of the similarities between some locations and the differences between others.

Documentos Relacionados