Strandedness and Complementarity of DNA from Long-Term RNA-Dependent DNA Polymerase Reactions of Soehner-Dmochowski Murine Sarcoma Virus

AUTOR(ES)
RESUMO

The DNA product of the endogenously instructed RNA-dependent DNA polymerase reaction of murine sarcoma virus continued to be synthesized for as long as 64 h in the presence of 0.008% Triton X-100. Higher detergent concentrations and actinomycin D inhibited DNA product synthesis. The DNA product from long-term polymerase reactions consisted of small DNA fragments as shown by sedimentation in alkaline sucrose gradients. The enzymatic DNA product was separated into a slow sedimenting fraction and a fast sedimenting fraction by rate-zonal centrifugation. Fast sedimenting DNA was the predominant fraction made in viral polymerase reactions containing 262 mM NaCl. By using a combination of S-1 nuclease and pancreatic RNase A, the amount of single-stranded DNA, double-stranded DNA, and DNA-RNA hybrid present in the slow-sedimenting and fast-sedimenting fractions was determined. Under standard polymerase conditions of 70 mM NaCl, single-stranded DNA was the major form of DNA found in both fractions. In contrast, the prevalent form of DNA made in the presence of 262 mM NaCl was DNA-RNA hybrid. Hybridization studies in which either S-1 nuclease or pancreatic RNase A was used to measure hybrid formation demonstrated not only that the DNA product was complementary in base sequence to the RNA genome, but also that at least 79 to 84% of the RNA genome was transcribed into complementary DNA.

Documentos Relacionados