Structural and antigenic characteristics of Campylobacter coli FlaA flagellin.

AUTOR(ES)
RESUMO

The polar flagellar filament of Campylobacter coli VC167 is composed of two highly related (98%) flagellin subunit proteins, FlaA and FlaB, whose antigenic specificities result from posttranslational modification. FlaA is the predominant flagellin species, and mutants expressing only FlaA form a full-length flagellar filament. Although the deduced M(r) of type 2 (T2) FlaA is 58,884 and the apparent M(r) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 59,500, the solution weight-average M(r) by sedimentation analysis was 63,000. Circular dichroism studies in the presence or absence of 0.1% sodium dodecyl sulfate or 50% trifluorethanol showed that the secondary structure of T2 FlaA flagellin was altered, with alpha-helix structure being increased to 25% in the nonpolar environment. The molecule also contained 35 to 48% beta-sheet and 11 to 29% beta-turn structure. Mimeotope analysis of octapeptides representing the sequence of FlaA together with immunoelectron microscopy and enzyme-linked immunosorbent assay with a panel of antisera indicated that many residues in presumed linear epitopes were inaccessible or nonepitopic in the assembled filament, with the majority being in the N-terminal 337 residues of the 572-residue flagellin. Residues at the carboxy-terminal end of the T2 FlaA subunit also become inaccessible upon assembly. Digestion with trypsin, chymotrypsin, and endoproteinase Glu-C revealed a protease-resistant domain with an approximate M(r) of 18,700 between residues 193 and 375. Digestion with endoproteinase Arg-C and endoproteinase Lys-C allowed the mapping of a segment of surface-exposed FlaA sequence which contributes serospecificity to the VC167 T2 flagellar filament at residues between 421 and 480.

Documentos Relacionados