Structural and kinetic comparison of recombinant human single- and two-chain tissue plasminogen activator.

AUTOR(ES)
RESUMO

We examined the similarities and differences in conformation between recombinant human single-chain tissue plasminogen activator (sct-PA) and two-chain tissue plasminogen activator (tct-PA), and compared these structural data with measurement of enzymatic activity. The intrinsic protein fluorescence of native tct-PA was 54% that of sct-PA. Differences in steady state protein fluorescence were also noted with denaturation of these plasminogen activators, as well as in the quenching of intrinsic fluorescence of the reduced, alkylated species by iodide. Using the chromogenic substrate H-D-isoleucyl-L-prolyl-L-arginine-p-nitroanilide (S-2288), the catalytic efficiency of sct-PA was found to be 26% that of tct-PA, and this was primarily a reflection of the difference in Km. On addition of soluble fibrin monomer prepared with the tetrapeptide glycyl-L-prolyl-L-arginyl-L-proline (GPRP), the catalytic efficiency of both species increased by 13-fold for sct-PA and by 3.5-fold for tct-PA to approximately the same value. Using the fluorophore eosin iodoacetamide covalently coupled to the single free cysteine in the molecule, Cys 83, the microenvironment of the fibrin-binding site located near this residue was studied. On addition of soluble fibrin monomer to eosin-labeled tct-PA, no effect on eosin fluorescence was noted. Eosin-labeled tct-PA had 16% less eosin fluorescence than did sct-PA and on addition of soluble fibrin monomer to eosin-labeled sct-PA, a decrease in eosin fluorescence, approaching that of eosin coupled to tct-PA, was observed. Together, these structural and kinetic data suggest that sct-PA undergoes a conformational change on binding to fibrin monomer that leads to dramatic differences in catalytic efficiency of the single-chain species. In so doing, sct-PA bound to fibrin assumes the kinetic profile of tct-PA bound to fibrin.

Documentos Relacionados