Structure and Expression of Phosphoenolpyruvate Carboxylase Kinase Genes in Solanaceae. A Novel Gene Exhibits Alternative Splicing1

AUTOR(ES)
FONTE

The American Society for Plant Biologists

RESUMO

Phosphorylation of phosphoenolpyruvate carboxylase (PEPc; EC 4.1.1.31) plays an important role in the control of central metabolism in higher plants. Two PPCK (PEPc kinase) genes have been identified in tomato (Lycopersicon esculentum cv Alicante), hereafter termed LePPCK1 and LePPCK2. The function of the gene products has been confirmed by transcription of full-length cDNAs, translation, and in vitro assay of kinase activity. Previously studied PPCK genes contain a single intron. LePPCK2 also contains a novel second intron that exhibits alternative splicing. The correctly spliced transcript encodes a functional PEPc kinase, whereas unspliced or incorrectly spliced transcripts encode a truncated, inactive protein. The relative abundance of the transcripts depends on tissue and conditions. Expression of LePPCK2 was markedly increased during fruit ripening. In ripe Alicante fruit, the locule and seeds contained only the correctly spliced LePPCK2 transcripts, whereas in ripe fruit of the tomato greenflesh mutant, they contained correctly and incorrectly spliced transcripts. Potato (Solanum tuberosum) contains genes that are very similar to LePPCK1, and LePPCK2; StPPCK2 exhibits alternative splicing. Aubergine (Solanum melongena) and tobacco (Nicotiana tabacum) also contain a PPCK2 gene; the sequence of the alternatively spliced intron is highly conserved between all four species. The data suggest that the two PPCK genes have different roles in tissue-specific regulation of PEPc and that the alternative splicing of PPCK2 transcripts is functionally significant.

Documentos Relacionados