Structure and regulation of genes encoding phycocyanin and allophycocyanin from Anabaena variabilis ATCC 29413.

AUTOR(ES)
RESUMO

Gene clones encoding phycocyanin and allophycocyanin were isolated from an Anabaena variabilis ATCC 29413-Charon 30 library by using the phycocyanin (cpc) genes of Agmenellum quadruplicatum and the allophycocyanin (apc) genes of Cyanophora paradoxa as heterologous probes. The A. variabilis cpcA and cpcB genes occur together in the genome, as do the apcA and apcB genes; the two sets of genes are not closely linked, however. The cpc and apc genes appear to be present in only one copy per genome. DNA-RNA hybridization analysis showed that expression of the cpc and apc genes is greatly decreased during nitrogen starvation; within 1 h no cpc or apc mRNA could be detected. The source of nitrogen for growth did not influence expression of the genes; vegetative cells from nitrogen-fixing and ammonia-grown cultures had approximately the same levels of cpc and apc mRNAs. Heterocysts had less than 5% as much cpc mRNA as vegetative cells from nitrogen-fixing cultures. Northern hybridization (RNA blot) analysis showed that the cpc genes are transcribed to give an abundant 1.4-kilobase (kb) RNA as well as two less prominent 3.8- and 2.6-kb species. The apc genes gave rise to two transcripts, a 1.4-kb predominant RNA and a minor 1.75-kb form.

Documentos Relacionados