Study of prebiotic activity of lignocellulosics hydrolyzed products. / Estudo da atividade prebiotica de hidrolisado lignocelulosicos.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

In this present work, six basidiomycete strains were evaluated using five different lignocelulosic agricultural residues as substrates. These fungi were cultivated under non-agitated conditions for 30 days. Searching for the best strains able to produce lignocellulolytic enzymes, hidrolise these growth substrates and generate compounds having prebiotic activity, Pleurotus sp BCCB068 and Pleurotus tailândia were selected at 10 days of growth using rice bran as the sole carbon source, because they exibited the best xylanase activities (0.29 and 0.24 U/mL, respectively). Growth of these fungi was optimized using an experimental design, resulting in the increase of xylanase activities to 0.4 and 0.69 U/mL, respectively. The crude extract obtained following growth of these fungi used as enzyme source for the hidrolises of xylan and carboxymethylcellulose matrices, which were degradaded (66.4 and 59.9%), respectively, during 0-60 minutes of hydrolysis, forming xylo- and celo-oligosaccharides, as well as several sugar monomers. Pleurotus sp BCCB068 and Pleurotus tailândia were also used directly to degrade xylan under fermentation during 40 days, produzing xylooligosaccharides and sugars, and showing degradation of 73.6% at the 20th day, and 70,1% at the 5th day, respectively. The hydrolyzed products with positive effect in the degradation of xylan and carboxymethylcellulose were evaluated regarding their prebiotic activity, showing significant stimulation of Lactobacillus and Bifidobacterium. However, no significant stimulation of enteropatogenic bacteria such as S. enteritidis and E. coli, in an in vitro experimentation. These results indicate a great potential of these fungal strains to degrade hemicellulosic materials and produce hydrolyzed compounds with prebiotic characteristics.

ASSUNTO(S)

prebiotics prebioticos pleurotus biodegradação pleurotus xylooligosaccharides xilooligossacarideos enzymes biodegradation

Documentos Relacionados