STUDY OF THE STRUCTURAL AND MAGNETIC PROPERTIES OF Zn1-xMnxIn2Se4 SYSTEM / ESTUDO DAS PROPRIEDADES ESTRUTURAIS E MAGNÉTICAS DO SISTEMA Zn1-xMnxIn2Se4

AUTOR(ES)
DATA DE PUBLICAÇÃO

2004

RESUMO

This work reports a systematic study on the crystal growth and magnetic and structural properties of the diluted magnetic semiconductors (SMD) Zn1-xMnxIn2Se4. Crystals with Mn concentrations $0leqslant xleqslant 1.00$ were grown by chemical vapour transport (CVT). Through x-ray powder diffraction patterns and Laue diagrams of single crystal we studied the transformation from the layered rhombohedral structure of MnIn2Se4 to the tetragonal structure of ZnIn2Se4. We observe the presence of a purely rhombohedral phase for $xgeqslant 0.87$, a purely tetragonal phase for $xleqslant 0.25$ and a two-phase mixture for x between 0.67 and 0.35. Electron Paramagnetic Resonance (EPR) spectroscopy has been performed in the temperature range 4.2 K to 300 K for various concentrations of Mn. All the spectra had the main absorption peak centered at g=2. The resonance peak-to-peak line width, ÄHpp, decreases with increasing concentration of manganese and with increasing temperature. This behavior is intimately related with the exchange interaction between magnetic ions. The analysis of the temperature dependence of ÄHpp resulted in estimates for the Curie-Weiss temperature $ heta$ and for the freezing temperature Tf of the spin glass phase. The DC magnetic susceptibility has been investigated in the range between $2Kleqslant Tleqslant 300K$. The high temperature data (T>100 K) gave estimates for the parameter $ heta$, as well as for the concentration x of Mn. The values of $ heta$ obtained in this way are in good agreement with those obtained from EPR and were used to estimate the antiferromagnetic exchange constants for the two extremes of concentration of the system. For the samples with high concentration of Mn, $xgeqslant 0.67$, irreversibilities characteristic of a spin glass transition have been observed at temperatures below 4K. To better characterize this transition, AC and DC susceptibility measurements for different frequencies and magnetic fields were made in the temperature range between 2 and 20 K. The low field AC susceptibility displayed sharp peaks at Tf ~2.5, 3.0 and 3.5 K for samples with x= 0.67, 0.87 and 1.00, respectively. Irreversibility between zero field cooled (ZFC) and field cooled (FC) DC measurements was observed in the three samples. Evidence of a true phase transition phenomenon is given by the steep increase of the nonlinear susceptibility $chiNL$ when approaching Tf from above. Static scaling analysis of $chiNL$ and dynamic scaling analysis of the AC susceptibility data have been carried out, which yielded critical exponents consistent with those obtained in other spin-glasses with short-range interactions.

ASSUNTO(S)

structural cristallographic cristalografia estrutural magnetic properties propriedades magneticas crystal growth crescimento de cristais

Documentos Relacionados