Subgenomic replicons of the flavivirus Kunjin: construction and applications.

AUTOR(ES)
RESUMO

Several Kunjin virus (KUN) subgenomic replicons containing large deletions in the structural region (C-prM-E) and in the 3' untranslated region (3'UTR) of the genome have been constructed. Replicon RNA deltaME with 1,987 nucleotides deleted (from nucleotide 417 [in codon 108] in the C gene to nucleotide 2403 near the carboxy terminus of the E gene, inclusive) and replicon RNA C20rep with 2,247 nucleotides deleted (from nucleotide 157 [in codon 20] in C to nucleotide 2403) replicated efficiently in electroporated BHK21 cells. A further deletion from C20rep of 53 nucleotides, reducing the coding sequence in core protein to two codons (C2rep RNA), resulted in abolishment of RNA replication. Replicon deltaME/76 with a deletion of 76 nucleotides in the 3'UTR of deltaME RNA (nucleotides 10423 to 10498) replicated efficiently, whereas replicon deltaME/352 with a larger deletion of 352 nucleotides (nucleotides 10423 to 10774), including two conserved sequences RCS3 and CS3, was significantly inhibited in RNA replication. To explore the possibility of using a reporter gene assay to monitor synthesis of the positive strand and the negative strand of KUN RNA, we inserted a chloramphenicol acetyltransferase (CAT) gene into the 3'UTR of deltaME/76 RNA under control of the internal ribosomal entry site (IRES) of encephalomyelocarditis virus RNA in both plus (deltaME/76CAT[+])- and minus (deltaME/76CAT[-])-sense orientations. Although insertion of the IRES-CAT cassette in the plus-sense orientation resulted in a significant (10- to 20-fold) reduction of RNA replication compared to that of the parental deltaME/76 RNA, CAT expression was readily detected in electroporated BHK cells. No CAT expression was detected after electroporation of RNA containing the IRES-CAT cassette inserted in the minus-sense orientation despite its apparently more efficient replication (similar to that of deltaME/76 RNA); this result indicated that KUN negative-strand RNA was probably not released from its template after synthesis. Replacement of the CAT gene in the deltaME/76CAT(+) RNA with the neomycin gene (Neo) enabled selection and recovery of a BHK cell culture in which the majority of cells were continuously expressing the replicon RNA for 41 days (nine passages) without apparent cytopathic effect. The constructed KUN replicons should provide valuable tools to study flavivirus RNA replication as well as providing possible vectors for a long-lasting and noncytopathic RNA virus expression system.

Documentos Relacionados