Synthesis and antimicrobial activity evaluation of 5-methylsulphonyl-2-tiophylidenics derivatives and 5(6)-benzofuroxanics derivatives against standard and multi-drug resistant Staphylococcus aureus strains / Síntese e avaliação da atividade antibacteriana de derivados 5-metilsulfonil-2-tiofilidênicos e de derivados 5(6)-benzofuroxânicos frente a cepas padrão e multi-resistente de Staphylococcus aureus

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

Emergent antimicrobial resistance is a challenge for microbiologists, physicians, public health organizations, and pharmaceutical industry. Over the past three decades Gram-positive pathogens, most notably Staphylococcus aureus, have become increasingly resistant to multiple antibiotics due to their extensive hospital and community use. This has come at time when very few new antibiotic classes have been identified, and emphasizes the urge for new antibacterial agents. Molecular modification has been used as a quite promising strategy in the design and development of drug analogs with better bioavailability, higher intrinsic activity, and lesser toxicity. Thus, for this work a series of 5-methylsulfonyl-2-thiophylidene and 5(6)-benzofuroxans derivatives were synthetized and tested for antibacterial activity against resistant Staphylococcus aureus strains. The selection of the substituent groups was based on the influence of physical-chemical properties, such as hydrophobicity and eletronic effects. Antibacterial activity was evaluated through the determination of the minimum inhibitory concentration, MIC, against Staphylococcus aureus strains ATCC25923, 3SP/R33 and VISA3. 5-methylsulfonyl-2-thiophylidene derivatives did not show antibacterial activity, while all 5(6)-benzofuroxans derivatives were active against the standard strain ATCC25923. 4-nitro-benzoic acid[((5(6)benzo[c][1,2,5]oxadiazole N1-oxide)-2- yl)-methylene]-hydrazyde (MIC=16,80 µg/mL) was the most active compound, and the least active was benzoic acid[((5(6)benzo[c][1,2,5]oxadiazole N1-oxide)- 2-yl)-methylene]-hydrazyde (MIC = 36,00 µg/mL). It was evidenced that the antimicrobial activity of these compounds is influenced by the hydrofobicity and electronic effects of substituent groups. Compounds 4-nitro-benzoic acid[((5(6)benzo[c][1,2,5]oxadiazole N1-oxide)-2-yl)-methylene]-hydrazyde and 4-Chloro-benzoic acid[((5(6)benzo[c][1,2,5]oxadiazole N1-oxide)-2-yl)-methyl- ene]-hydrazyde were evaluated against the resistant strains 3SP/R33 and VISA3, and both showed similar antimicrobial activity when compared to the standard strain. It must be pointed out that eleven previously unknown compounds were synthetized and tested in this work.

ASSUNTO(S)

staphylococcus aureus 5-methylsulphonyl-2-tiophylidenics derivatives atividade antibacteriana derivados 5-metilsulfonil-2-tiofilidênicos staphylococcus aureus antibacterial activity 5(6)-benzofuroxanics derivatives derivados 5(6)-benzofuroxânicos

Documentos Relacionados