Temperature-Sensitive Cell-Lethal Mutants of Drosophila: Isolation and Characterization

AUTOR(ES)
RESUMO

One hundred and twenty-one temperature-sensitive (ts) sex-linked lethals were screened by means of X-ray-induced somatic crossing over to determine if any were ts cell-lethal mutants. Cell-lethal mutations were identified by their ability to block the development of homozygous clones when raised under restrictive conditions (29°). Twenty-two ts cell-lethal mutants were isolated and categorized into three classes, depending upon the patterns of damage observed in larval and imaginal tissues. The phenotypes produced by these mutations ranged from those which affected only a limited set of structures (i.e., genital discs only) to those which affected diverse tissues at all stages of the life cycle. Each mutation has its own characteristic time-dependent pattern, frequency, and type of damage. All the mutations affect imaginal tissue, but only one-third of the mutations affect both larval and imaginal tissue. The fastest-acting lethals need 15 hours at the restrictive temperature to kill the cells and the slowest-acting lethals require at least 48 hours. By choosing the appropriate mutant and by manipulating the times of exposure to the restrictive temperature, it has proven possible to produce duplications and deficiencies in specific structures of the adult. A mechanism by which lethality might yield such structures is suggested. In addition, 15 of the mutants are ts female sterile mutants. Only one of these 15 mutants can recover its fertility when shifted back down to the permissive temperature (22°).

Documentos Relacionados