TH1 cells trigger tumor necrosis factor alpha-mediated hypersensitivity to Pseudomonas aeruginosa after adoptive transfer into SCID mice.

AUTOR(ES)
RESUMO

Recent experiments have shown that gamma interferon (IFN-gamma), either administered or induced in vivo, e.g., by certain bacteria, is a key mediator in inducing hypersensitivity to bacterial lipopolysaccharides. The source of endogenous IFN-gamma in this context (natural killer versus TH1 cells) has not been investigated yet. In order to investigate the role of antigen-specific, IFN-gamma-producing TH1 cells in murine Pseudomonas aeruginosa infection, a murine TH1 cell line was propagated in vitro by using recombinant P. aeruginosa outer membrane protein I. Adoptive transfer experiments were performed by intravenous injection of various amounts of TH1 cells into P. aeruginosa-challenged SCID mice. Adoptive transfer of 5 x 10(6) T cells into SCID mice followed by an intraperitoneal challenge with 1.4 x 10(6) CFU of live P. aeruginosa resulted in the rapid death of the animals within 12 h postchallenge, whereas transfer of lower T-cell doses and saline as a control did not cause any detrimental effects. After challenge with 2.8 x 10(6) CFU of P. aeruginosa, similar results were obtained 18 h postchallenge; however, at the end of the 72-h observation period, no significant differences in survival rates were obtained between the groups treated with different amounts of T cells. The rapid death of mice treated with 5 x 10(6) T cells was reflected by 860-fold-elevated levels of tumor necrosis factor alpha (TNF-alpha) present in serum 2 h postchallenge, whereas no significant differences in TNF-alpha serum levels were detectable in mice treated with lower doses of T cells or with saline. Pretreatment of T-cell-reconstituted SCID mice with neutralizing anti-IFN-gamma monoclonal antibodies completely protected mice from bacterial challenge and reduced TNF-alpha levels in serum. We conclude that under the experimental conditions described here, IFN-gamma- and interleukin-2-producing TH1 cells represent an important trigger mechanism inducing TNF-alpha-mediated hypersensitivity to bacterial endotoxin.

Documentos Relacionados